Woman In Data Science Meetup

Woman In Data Science Meetup
Санкт-Петербург, ул. Малая Монетная, 2ГБесплатноОфлайн с онлайн трансляцией
ML, AI
https://ods.ai/events/wids-meetup-2024

Привет, друзья! С радостью приглашаем вас на уникальное событие, посвященное силе и вкладу женщин в мире данных - митап "Woman In Data Science"! Это не просто встреча, это праздник ума, таланта и вдохновения, организованный ODS SPB при поддержке компании Samokat.tech.

Прямая трансляция и чат будут доступны на YouTube, а всех, кто любит и ценит оффлайн как мы, ждем в офисе "Самокат" по адресу ул. Малая Монетная, 2Г (БЦ Лангензипен). Так как количество мест в зале ограничено, для входа просьба зарегистрироваться заранее. Начинаем в 18:30.

Программа:

1. Гращенков Кирилл, Senior ML разработчик в Samokat.tech

[Мега]Матчер. Система соответсвий товаров: ожидания, проблемы и решения в e-comm платформе.

О чем поговорим:

 — что такое матчинг: зачем о нужен крупным маркетплейсам, какие бизнес-задачи решает

 — в прямом эфире попробуем сматчить товары

 — посмотрим, что под капотом сервиса матчинга товаров и разберем основные подводные камни во время разработки модели: 

  a) Проблема задублированности и почему это проблема 

  б) Проблема последовательного обучения моделей 

  в) Оценка качества модели и калибровка порогов

2. Анастасия Овчинникова, Team Lead DS at Работа.ру

"Как сделать рекомендации точнее: модель второго уровня в задаче подбора вакансий по резюме"

Тезисы:

1. Описание проблемы. Почему одной модели недостаточно.

2. Выбираем оптимальную модель.

3. Работа с признаками: как не погрязнуть в море возможностей и не упустить ничего важного.

4. Эффективная интеграция модели в production: обеспечение стабильности и масштабируемости

5. Неожиданные препятствия и пути их преодоления

6. Модель в проде. Что дальше?

3. Дина Сафина, head of data platform Ozon.Fintech

“Data Quality - почему это так важно и как выбирать подход”

Тезисы:

  1. “Значение Data Quality в современной компании: как обеспечить высокое качество данных для достоверных результатов моделей и аналитики”
  2. “Инструменты и методы Data Quality: как повысить эффективность анализа данных и минимизировать ошибки”
  3. "Роль Data Quality в успешной реализации проектов по Data Science: ключевые принципы и практические примеры"

4. Оксана Крымина, Actuarial Data Scientist, Страховой дом ВСК

“Если данных маловато, или Байесом по неопределенности”

Тезисы: 

1. Мало данных или мало информации? * Информация Фишера 

2. Наблюдаемые признаки недостатка информации * Мало строк записей * Overdispersed Distributions (в таргете и в объясняющих переменных) 

3. Идеальное комбо проблем: марки и модели автомобилей в страховании КАСКО 

4. Байесовские модели: ищем распределение вместо точечной оценки * парадигма байесовского вывода * байесовская ОЛМ (обобщенная линейная модель) * что нужно для реализации в коде: Stan, ресурсные требования 

5. Учесть все: граф знаний и байесовская модель * feature-engineering: группировка (из кластеризации) * аугментация данных * эмбеддинги вершин * иерархическая модель и порождение орграфом